Answer:
a)
b)
c)
d) Displacement = 22 m
e) Average speed = 11 m/s
Explanation:
a)
Notice that the acceleration is the derivative of the velocity function, which in this case, being a straight line is constant everywhere, and which can be calculated as:
Therefore, acceleration is
b) the functional expression for this line of slope 4 that passes through a y-intercept at (0, 3) is given by:
c) Since we know the general formula for the velocity, now we can estimate it at any value for 't", for example for the requested t = 1 second:
d) The displacement between times t = 1 sec, and t = 3 seconds is given by the area under the velocity curve between these two time values. Since we have a simple trapezoid, we can calculate it directly using geometry and evaluating V(3) (we already know V(1)):
Displacement =
e) Recall that the average of a function between two values is the integral (area under the curve) divided by the length of the interval:
Average velocity =
Answer:
Explanation:
Let the intensity of unpolarised light be I₀ . After passing through the first polarising filter , the intensity is I₀ / 2 .
After second filter , the intensity will be I₀ / 2 x cos²45 = I₀ / 4
After third filter , the intensity will be I₀ / 4 x cos²45 = I₀ / 8 .
So,
1 / 8 the of initial light passes through the last filter .
Answer:
The magnitude of the horizontal displacement of the rock is 7.39 m/s.
Explanation:
Given that,
Initial speed = 11.5 m/s
Angle = 50.0
Height = 30.0 m
We need to calculate the horizontal displacement of the rock
Using formula of horizontal component
Put the value into the formula
Hence, The magnitude of the horizontal displacement of the rock is 7.39 m/s.
The wavelength of light is
given as 463 nm or can also be written as 463 x 10^-9 m. [wavelength = ʎ]
We know that the speed of
light is 299 792 458 m / s or approximately 3 x 10^8 m / s. [speed of
light = c]
Given the two values, we can calculate
for the frequence (f) using the formula:
f = c / ʎ
Substituting the given
values:
f = (3 x 10^8 m / s) / 463 x
10^-9 m
f = 6.48 x 10^14 / s = 6.48 x
10^14 s^-1
<span>f = 6.48 x 10^14 Hz</span>
Unfortunately, the given statements are missing from the problem. However, we can still determine the relationship between the electric force between two objects and the distance between them. The formula for the electric force is given below:
F = (k*Q1*Q2)/d^2
k is a constant, while Q1 and Q2 are the respective charges of the objects. F is force, while d is distance.
As seen in the formula, we can see that the electric force F is inversely proportional to the square of the distance between the two objects.