Answer:
50
Step-by-step explanation:
Already done this
First answer is the correct answer
Answer:
<u>Step-by-step explanation:</u>
Note the following identities: tan² x = sec²x - 1
tan² x + sec x = 1
(sec² x -1) + sec x = 1
sec² x + sec x - 2 = 0
(sec x + 2)(sec x - 1) = 0
sec x + 2 = 0 sec x - 1 = 0
sec x = -2 sec x = 1
Answer:
If y(x-y)^2=x, then int1/(x-3y)dx is equal to (A) 1/3log{(x-y)^2+1} (B) 1/4log{(x-y)^2-1} (C) 1/2log{(x-y)^2-1} (D) 1/6 log{(x^2-y^2-1}
Step-by-step explanation: