36+10=46
=46
(20 characterssss)
Answer:
f(x) > 0 over the interval
Step-by-step explanation:
If f(x) is a continuous function, and that all the critical points of behavior change are described by the given information, then we can say that the function crossed the x axis to reach a minimum value of -12 at the point x=-2.5, then as x increases it ascends to a maximum value of -3 for x = 0 (which is also its y-axis crossing) and therefore probably a local maximum.
Then the function was above the x axis (larger than zero) from , until it crossed the x axis (becoming then negative) at the point x = -4. So the function was positive (larger than zero) in such interval.
There is no such type of unique assertion regarding the positive or negative value of the function when one extends the interval from to -3, since between the values -4 and -3 the function adopts negative values.
<h3>
Answer: (4,2)</h3>
==============================================================
Explanation:
C is at (0,0). Ignore the other points.
Reflecting over y = 1 lands the point on (0,2) because we move 1 unit up to arrive at the line of reflection, and then we keep going one more unit (same direction) to complete the full reflection transformation. I'll call this point P.
Then we reflect point P over the line x = 2 to arrive at the location Q = (4,2). Note how we moved 2 units to the right to get to the line of reflection, and then keep moving the same direction 2 more units, then we have applied the operation of "reflect over the line x = 2"
So we have started at C = (0,0), moved to P = (0,2) and then finally arrived at the destination Q = (4,2). This is the location of C' as well.
All of this is shown in the diagram below.
Similar triangles are triangles that have the same interior angles and the corresponding sides are proportional, that is, for triangles STU and XYZ we have the proportion:
The corresponding sides are congruent only if the proportion rate is 1, but that is not always true and it's not necessary.
Therefore the correct option is B: False
If the corresponding sides are congruent, the triangles are congruent.