The solids are characterized as amorphous and crystalline solids based on the arrangement of atoms. The solids that are amorphous are rubber, plastic, candle wax, and glass.
<h3>What are amorphous solids?</h3>
The solids have the arrangement of atoms in the lattice. The solids with an appropriate arrangement of atoms are crystalline solids. For example, sugar, graphite.
The solids with irregular arrangements of atoms in the lattice are amorphous solids. For example, glass, rubber.
Thus, the solids that are amorphous in nature are rubber, plastic, candle wax, and glass.
Learn more about amorphous solids, here:
brainly.com/question/4626187
Answer:
0.175mol
Explanation:
Mole of a substance can be calculated using the formula as follows:
number of moles (n) = mass (m) ÷ molar mass (MM)
According to this question, there are 4.2g of Magnesium (Mg).
Molar mass of Magnesium = 24g/mol, hence, the number of moles of 4.2g of Mg is as follows:
n = 4.2g ÷ 24g/mol
n = 0.175mol
Answer:
Cohesion
Explanation:
Depending on how attracted molecules of the same substance are to one another, the substance will be more or less cohesive. Hydrogen bonds cause water to be exceptionally attracted to each other. Therefore, water is very cohesive.
Answer:
Depth and location affect ocean water’s temperature.
Explanation:
The main source of heat for the oceans is solar radiation. That is, water is basically heated by the radiation of the Sun, which transmits energy to the surface. The ocean absorbs this energy and stores it. Seawater has high caloric capacity. This means that more energy and more time is needed to change or increase the water temperature, compared to the air temperature. Similarly, once the ocean heats up, it takes a long time for the water to completely release or lose that heat.
The temperature decreases to greater depth, because the amount of solar radiation is reduced. On the contrary, it is greater where there is greater energy or heat content.
The closer a place is to the equator, the solar energy will affect more vertically and with more intensity on it, so the warmer the temperatures will be. The further that point of the equator is found, the solar energy will reach it with a smaller angle. And if the point is near the poles, the sun's rays will arrive at a very small angle. This causes the temperature of the water of the oceans to vary depending on the earth's latitude, being higher in areas close to the equator and the tropics, and colder the closer to the poles or the further away from the temperate zones.