Diagram of the nuclear composition, electron configuration, chemical data, and valence orbitals of an atom of neodymium-144 (atomic number: 60), an isotope of this element. The nucleus consists of 60 protons (red) and 84 neutrons (orange). 60 electrons (white) successively occupy available electron shells (rings).
1a. calcium chloride (CaCl2)
b. 2HCl (aq) + Ca(OH)2 (s) —> CaCl2 (aq) + 2H2O (l)
i’m not sure about the rest but i hope this helped ^^
Answer:
The answer to your question is P = 0.18 atm
Explanation:
Data
mass of O₂ = 0.29 g
Volume = 2.3 l
Pressure = ?
Temperature = 9°C
constant of ideal gases = 0.082 atm l/mol°K
Process
1.- Convert the mass of O₂ to moles
16 g of O₂ -------------------- 1 mol
0.29 g of O₂ ---------------- x
x = (0.29 x 1)/16
x = 0.29/16
x = 0.018 moles
2.- Convert the temperature to °K
Temperature = 9 + 273 = 282°K
3.- Use the ideal gas law ro find the answer
PV = nRT
-Solve for P
P = nRT/V
-Substitution
P = (0.018 x 0.082 x 282) / 2.3
-Simplification
P = 0.416/2.3
-Result
P = 0.18 atm
Answer:
a. A beta particle has a negative charge. d. A beta particle is a high-energy electron.
Explanation:
Identify the correct descriptions of beta particles.
a. A beta particle has a negative charge. YES. A beta particle is originated in the following nuclear reaction: ¹₀n ⇒ ¹₁H + ⁰₋₁e (beta particle.)
b. A beta particle contains neutrons. NO. It is a electron originated in the nucleus.
c. A beta particle is less massive than a gamma ray. NO. Gamma rays don't have mass while a beta particle has a mass which is half of one thousandth of the mass of a proton.
d. A beta particle is a high-energy electron. YES. Beta particles are nuclear originated hig-energy electrons.
Answer:
Explanation:
In this case, we can start with the reaction:
If we check the reaction, we will have 2 X and Y atoms on both sides. So, <u>the reaction is balanced</u>. Now, the problem give to us two amounts of reagents. Therefore, we have to find the <u>limiting reagent</u>. The first step then is to find the moles of each compound using the <u>molar mass</u>:
Now, we can <u>divide by the coefficient</u> of each compound (given by the balanced reaction):
The smallest value is for "X", therefore this is our <u>limiting reagent</u>. Now, if we use the <u>molar ratio</u> between "X" and "XY" we can calculate the moles of XY, so:
Finally, with the molar mass of "XY" we can calculate the grams. Now, we know that 1 mol X = 85 g X and 1 mol = 48 g (therefore 1 mol Y = 24 g Y). With this in mind the <u>molar mass of XY</u> would be 85+24 = 109 g/mol. With this in mind:
I hope it helps!