___
Regarding the bonds in FesO₄, Fe and S have an ionic bond, while S and O have covalent bonds.
Elements form bonds to increase their stability. The main types of bonds are:
- Metallic bonds: they are formed between metals and the electrons are in a delocalized cloud.
- Ionic bonds: they are formed between metals (lose electrons) and nonmetals (gain electrons)
- Covalent bonds: they are formed between nonmetals, which share electrons.
Regarding the bonds in FesO₄:
- Fe is a metal and S a nonmetal, thus they will form ionic bonds.
- S and O are both nonmetals, thus they will form covalent bonds.
Regarding the bonds in FesO₄, Fe and S have an ionic bond, while S and O have covalent bonds.
Learn more: brainly.com/question/23882847
Thermal energy is the sum of the kinetic and potential energy of all the particles in an object. The figure shows that if either potential or kinetic energy increases, thermal energy increases.
hope it really helps...!!!
Answer: The products formed in this Bronsted-Lowry reaction are and .
Explanation:
According to Bronsted-Lowry, acids are the species which donate hydrogen ions to another specie in a chemical reaction.
Bases are the species which accept a hydrogen ion upon chemical reaction.
For example,
Here, the products formed in this Bronsted-Lowry reaction are and .
Thus, we can conclude that the products formed in this Bronsted-Lowry reaction are and .
Answer:
36.66%
Explanation:
Step 1: Given data
- Mass of the sample: 2.875 g
Step 2: Calculate the mass of salt
The mass of the sample is equal to the sum of the masses of the components.
m(sample) = m(iron) + m(sand) + m(salt)
m(salt) = m(sample) - m(iron) - m(sand)
m(salt) = 2.875 g - 0.660 g - 1.161 g
m(salt) = 1.054 g
Step 3: Calculate the percent of salt in the sample
We will use the following expression.
%(salt) = m(salt) / m(sample) × 100%
%(salt) = 1.054 g / 2.875 g × 100% = 36.66%
Answer:
<u>Graphene</u> is a nanomaterial that is often used with other compounds to desalinate and decontaminate water.
The electrical behavior of semiconductor devices and electronics can be engineered using a process called <u>Doping</u>
Explanation: