Answer:
(sqrt(7))/3 or decimal 0.8819171036881968635005385845464201419034197276941500601227781530...
Step-by-step explanation:
Simplify the following:
(sqrt(14))/(sqrt(18))
Hint: | Simplify radicals.
sqrt(18) = sqrt(2×3^2) = 3 sqrt(2):
(sqrt(14))/(3 sqrt(2))
Hint: | Multiply numerator and denominator of (sqrt(14))/(3 sqrt(2)) by sqrt(2).
Rationalize the denominator. (sqrt(14))/(3 sqrt(2)) = (sqrt(14))/(3 sqrt(2))×(sqrt(2))/(sqrt(2)) = (sqrt(14) sqrt(2))/(3×2):
(sqrt(14) sqrt(2))/(3×2)
Hint: | Multiply 3 and 2 together.
3×2 = 6:
(sqrt(14) sqrt(2))/6
Hint: | For a>=0, sqrt(a) sqrt(b) = sqrt(a b). Apply this to sqrt(14) sqrt(2).
sqrt(14) sqrt(2) = sqrt(14×2):
(sqrt(14×2))/6
Hint: | Multiply 14 and 2 together.
14×2 = 28:
(sqrt(28))/6
Hint: | Simplify radicals.
sqrt(28) = sqrt(2^2×7) = 2 sqrt(7):
(2 sqrt(7))/6
Hint: | In (2 sqrt(7))/6, divide 6 in the denominator by 2 in the numerator.
2/6 = 2/(2×3) = 1/3:
Answer: (sqrt(7))/3