Answer:
8.049 MW
Explanation:
The expression for gravitational potential energy is given as
Ep = mgh............. Equation 1
Ep = gravitational potential energy, m = mass of water, h = height, g = acceleration due to gravity.
Given: m = 58.4×10³ kg, h = 20.1 m, g = 9.81 m/s²
Substitute into equation 1
Ep = 58.4×10³(20.1)(9.81)
Ep = 1.6098×10⁷ J.
If one half the gravitational potential energy of the water were converted to electrical energy
Electrical energy = Ep/2
Electrical energy = (1.6098×10⁷)/2
Electrical energy = 8.049×10⁶ J
In one seconds,
The power generated = 8.049×10⁶ W
Power generated = 8.049 MW
Correct question is;
A thermal tap used in a certain apparatus consists of a silica rod which fits tightly inside an aluminium tube whose internal diameter is 8mm at 0°C.When the temperature is raised ,the fits is no longer exact. Calculate what change in temperature is necessary to produce a channel whose cross-sectional is equal to that of the tube of 1mm. (linear expansivity of silica = 8 × 10^(-6) /K and linear expansivity of aluminium = 26 × 10^(-6) /K).
Answer:
ΔT = 268.67K
Explanation:
We are given;
d1 = 8mm
d2 = 1mm
At standard temperature and pressure conditions, the temperature is 273K.
Thus; Initial temperature; T1 = 273K,
Using the combined gas law, we have;
P1×V1/T1 = P2×V2/T2
The pressure is constant and so P1 = P2. They will cancel out in the combined gas law to give:
V1/T1 = V2/T2
Now, volume of the tube is given by the formula;V = Area × height = Ah
Thus;
V1 = (πd1²/4)h
V2 = (π(d2)²/4)h
Thus;
(πd1²/4)h/T1 = (π(d2)²/4)h/T2
π, h and 4 will cancel out to give;
d1²/T1 = (d2)²/T2
T2 = ((d2)² × T1)/d1²
T2 = (1² × T1)/8²
T2 = 273/64
T2 = 4.23K
Therefore, Change in temperature is; ΔT = T2 - T1
ΔT = 273 - 4.23
ΔT = 268.67K
Thus, the temperature decreased to 268.67K
Answer:
d) 1/32 microgram
Explanation:
First half life is the time at which the concentration of the reactant reduced to half.
Second half reaction is the time at which the remaining concentration reduced to half or the initial concentration reduced to 1/4.
Third half life is the time at which the remaining concentration reduced to half or the initial concentration reduced to 1/8.
Forth half life is the time at which the remaining concentration reduced to half or the initial concentration reduced to 1/16.
Fifth half life is the time at which the remaining concentration reduced to half or the initial concentration reduced to 1/32.
The initial mass of the sample = 1 microgram
After 5 half-lives, the mass should reduce to 1/32 of the original.
So the concentration left = 1/32 of 1 microgram = 1/32 microgram
Answer:
Final velocity v = 8.944 m/sec
Explanation:
We have given distance S = 40 meters
Time t = 10 sec
As it starts from rest so initial velocity u = 0
From second equation of motion
Now from first equation of motion , here v is final velocity, u is initial velocity, a is acceleration and t is time
So
The answer is b no problem