Answer:
No
Explanation:
Hurricanes always do not bring heat. For example, Hurricane Sandy brought snow.
Mary walks:
d 1 = 80 m, d 2 = 125 m, d 3 = 45 m
t = 10 minutes = 600 seconds;
Average speed:
v = ( d 1 + d 2 + d 3 ) / t
v = ( 80 m + 125 m + 45 m ) / 600 s
v = 250 m / 600 s
v = 0.4167 m/s ≈ 0.42 m/s
Answer:
E ) 0.42 meters/second
Answer:
Explanation:
No.
There is a difference between energy, called heat in this case, and temperature, which is a measure of the amount of heat contained in a material and is dependent on the material properties.
Temperature difference is what causes heat to move from one body to another.
Two objects at different temperatures placed in contact with one another will cause heat to move from the warmer body to the colder body until the temperature difference is eliminated.
The amount of heat leaving the warmer body will exactly equal the amount of heat absorbed by the cooler body. (assuming isolated system of two bodies) The temperature change within each of those bodies could be vastly different.
Example would be a 2 mm bead of molten lead dropped into a liter glass of tap water. The lead may cool several hundred °C as it solidifies while the water temperature would increase less than 1 °C
A) 8.11 m/s
For a satellite orbiting around an asteroid, the centripetal force is provided by the gravitational attraction between the satellite and the asteroid:
where
m is the satellite's mass
v is the speed
R is the radius of the asteroide
h is the altitude of the satellite
G is the gravitational constant
M is the mass of the asteroid
Solving the equation for v, we find
where:
Substituting into the formula,
B) 11.47 m/s
The escape speed of an object from the surface of a planet/asteroid is given by
where:
Substituting into the formula, we find: