Answer: 10.9 mol.
Explanation:
- To understand how to solve this problem, we must mention the reaction equation where water produced from PbO₂.
Pb + PbO₂ + 2H₂SO₄ → 2PbSO₄ + 2H₂O
- Now, it is a stichiometric oriented problem, that 1 mole of PbO₂ produces 2 moles of H₂O.
Using cross multiplication:
1.0 mole of PbO₂ → 2.0 moles of H₂O
5.43 moles of PbO₂ → ??? moles of water
The moles of water produced = (5.43 x 2.0) = 10.86 moles ≅ 10.9 moles.
Answer:
Consumers must consume other organisms to get the food that they need and are known as Heterotrophs as they cannot make their own glucose. These consumers eat producers (plants). Herbivores are considered as first order consumers. These consumers eat consumers and producers (animals and plants).
I think the answer you're looking for is digestion.
Answer:
See explanation
Explanation:
a) The magnitude of intermolecular forces in compounds affects the boiling points of the compound. Neon has London dispersion forces as the only intermolecular forces operating in the substance while HF has dipole dipole interaction and strong hydrogen bonds operating in the molecule hence HF exhibits a much higher boiling point than Ne though they have similar molecular masses.
b) The boiling points of the halogen halides are much higher than that of the noble gases because the halogen halides have much higher molecular masses and stronger intermolecular forces between molecules compared to the noble gases.
Also, the change in boiling point of the hydrogen halides is much more marked(decreases rapidly) due to decrease in the magnitude of hydrogen bonding from HF to HI. The boiling point of the noble gases increases rapidly down the group as the molecular mass of the gases increases.
Answer:
volume is 7.0 liters
Explanation:
We are given;
- Molarity of the aqueous solution as 2.0 M
- Moles of the solute, K₂S as 14 moles
We are required to determine the volume of the solution;
We need to know that;
Molarity = Moles ÷ volume
Therefore;
Volume = Moles ÷ Molarity
Thus;
Volume of the solution = 14 moles ÷ 2.0 M
= 7.0 L
Hence, the volume of the molar solution is 7.0 L