Answer:
Explanation:
Given
mass of First Block
Temperature
mass of second block
Temperature
Heat capacity of aluminium c=899 J/kg-K
Final Temperature acquired by both blocks at steady state
Heat loss first block =Heat gain by second block
Answer:
To write a number in scientific notation. First write a decimal point in the numbers so that there's only one digit to the left of the decimal point.
Answer:
a. Zin = 41.25 - j 16.35 Ω
b. V₁ = 143. 6 e⁻ ¹¹ ⁴⁶
c. Pin = 216 w
d. PL = Pin = 216 w
e. Pg = 478.4 w , Pzg = 262.4 w
Explanation:
a.
Zin = Zo * [ ZL + j Zo Tan (βl) ] / [ Zo + j ZL Tan (βl) ]
βl = 2π / λ * 0.15 λ = 54 °
Zin = 50 * [ 75 + j 50 Tan (54) ] / [ 50 + j 75 Tan (54) ]
Zin = 41.25 - j 16.35 Ω
b.
I₁ = Vg / Zg + Zin ⇒ I₁ = 300 / 41.25 - j 16.35 = 3.24 e ¹⁰ ¹⁶
V₁ = I₁ * Zin = 3.24 e ¹⁰ ¹⁶ * ( 41.25 - j 16.35)
V₁ = 143. 6 e⁻ ¹¹ ⁴⁶
c.
Pin = ¹/₂ * Re * [V₁ * I₁]
Pin = ¹/₂ * 143.6 ⁻¹¹ ⁴⁶ * 3.24 e ⁻ ¹⁰ ¹⁶ = 143.6 * 3.24 / 2 * cos (21.62)
Pin = 216 w
d.
The power PL and Pin are the same as the line is lossless input to the line ends up in the load so
PL = Pin
PL = 216 w
e.
Pg Generator
Pg = ¹/₂ * Re * [ V₁ * I₁ ] = 486 * cos (10.16)
Pg = 478.4 w
Pzg dissipated
Pzg = ¹/₂ * I² * Zg = ¹/₂ * 3.24² * 50
Pzg = 262.4 w
Answer:
100 cc
Explanation:
Heat released in cooling human body by t degree
= mass of the body x specific heat of the body x t
Substituting the data given
Heat released by the body
= 70 x 3480 x 1
= 243600 J
Mass of water to be evaporated
= 243600 / latent heat of vaporization of water
= 243600 / 2420000
= .1 kg
= 100 g
volume of water
= mass / density
= 100 / 1
100 cc
1 / 10 litres.