Try this solution (based on 3 steps: equation of the line; points in this line; equation of the plane).
Let x be the distance from Syracuse where they pass. The first car travels a distance of x in time x/65 while the second car travels a distance 240-x in time (240-x)/55. They pass at the same time after leaving their starting points so x/65=(240-x)/55.
Cross-multiplying we get: 55x=65(240-x)=15600-65x, 120x=15600, x=15600/120=130 miles.
They pass 130 miles from Syracuse.
Answer:
Exact Form:
Decimal Form:
0.76
Step-by-step explanation:
<em>Hope this helped and good luck <3</em>
Answer:
what is the situation?
Step-by-step explanation:
The correct question is
<span>In a circle with a radius of 3 ft, an arc is intercepted by a central angle of 2π/3 radians. What is the length of the arc?
we know that
in a circle
</span>2π radians -----------------> lenght of (2*π*r)
2π/3 radians--------------> X
X=[(2π/3)*(2π*r)]/[2π]=(2π/3)*r
the lenght of the arc=(2π/3)*3=2π ft
the answer is 2π ft