Answer: The temperature of 0.6 moles of fluorine that occupy 15 L at 2,300 mmHg is 920 K
Explanation:
According to ideal gas equation:
P = pressure of gas = 2300 mm Hg = 3.02 atm (760mmHg=1atm)
V = Volume of gas = 15 L
n = number of moles = 0.6
R = gas constant =
T =temperature = ?
Thus the temperature of 0.6 moles of fluorine that occupy 15 L at 2,300 mmHg is 920 K
<span>Fe(NO3)2
The NO3 part is a poly-atomic ion with total charge -1.
This is because Fe has a +2 charge and two NO3's with a -1 charge will balance out to 0.
Most often we just make the assumption that Oxygen has a -2 oxidation number because it is very electro-negative.
So to find N, we just need an oxidation number that balances out with 3(-2) to get -1 (the total charge of the ion)</span>
Answer : The limiting reagent is
Solution : Given,
Moles of methane = 2.8 moles
Moles of = 5 moles
Now we have to calculate the limiting and excess reagent.
The balanced chemical reaction is,
From the balanced reaction we conclude that
As, 2 mole of react with 1 mole of
So, 5 moles of react with moles of
From this we conclude that, is an excess reagent because the given moles are greater than the required moles and is a limiting reagent and it limits the formation of product.
Hence, the limiting reagent is