Answer:
2i: 169.71
2ii: 0.17L
3a: 4×10⁻⁵
3b: 110011
Step-by-step explanation:
2i. The surface of the top and bottom of the tin is two times (top and bottom) π·r² = 2·π·3² = 18π cm².
The circumference of the circle is 2·π·r = 6π cm².
The area of the material connecting top and bottom is a rectangle of the tin height times the circumference: 6·6π = 36π cm².
This gives a total of 18π + 36π = 54π cm².
With π approximated by 22/7 the total surface area is 54*22/7 ≈ 169.71.
Notice how the calculation is simple by waiting until the very last moment to substitute π.
2ii. The volume is the area π·r² of the circle times the height of the tin: 9π*6 = 54π cm³ ≈ 169.71 cm³.
Since 1L = 1000 cm³ the volume is 0.16971 litres, which should be rounded to 0.17 L.
3a: If we rewrite P as 36 x 10⁻⁴ and realize that 36/2.25 = 16, then the fraction can be written as
16 x 10⁻⁴⁻⁶ = 16 x 10⁻¹⁰.
The square root of that is taking it to the power of 1/2, so (16x10⁻¹⁰)^0.5 = 4x10⁻⁵ = 0.00004
3b: 1111 1111 is 255 in decimal. 101 is 5 in decimal. 255/5 is 51 in decimal. 51 in binary is 110011.
19 trees should be planted to maximize the total
<h3>How many trees should be planted to maximize the total</h3>
From the question, we have the following parameters:
Number of apples, x = 18
Yield, f(x) = 80 per tree
When the number of apple trees is increased (say by x).
We have:
Trees = 18 + x
The yield decreases by four apples per tree.
So, we have
Yield = 80 - 4x
So, the profit function is
P(x) = Apples * Yield
This gives
P(x) = (18 + x) *(80 - 4x)
Expand the bracket
P(x) = 1440 - 72x + 80x - 4x^2
Differentiate the function
P'(x) = 0 - 72 + 80 - 8x
Evaluate the like terms
P'(x) = 8 - 8x
Set P'(x) to 0
8 - 8x = 0
Divide through by 8
1 - x = 0
Solve for x
x = 1
Recall that:
Trees = 18 + x
So, we have
Trees = 18 + 1
Evaluate
Trees = 19
Hence, 19 trees should be planted to maximize the total
Read more about quadratic functions at:
brainly.com/question/12120831
#SPJ1
Could you show a picture so i could understand a little bit better?
4, 8, 16, 32, 64, 128, 256, 512, 1,024.
1,024 is the ninth number in this geometric sequence.
Hope this helps!!
~Kiwi