6 ( tell me if you got it right)
I assume what you're asking about is, how does the temperature changes when we increase water's mass, according the formula for heat ?
Well the formula is :
(where Q is heat, m is mass, c is specific heat and
is change in temperature. So according this formula, increasing mass will increase the substance's heat, but won't effect it's temperature since they are not related. Unless, if you want to keep the substance's heat constant, in that case when you increase it's mass you will have to decrease the temperature
Answer:
The value of Kp at this temperature is 7.44*10⁻³
Explanation:
Chemical equilibrium is established when there are two opposite reactions that take place simultaneously at the same speed.
For the general chemical equation for a homogeneous gas phase system:
aA + bB ⇔ cC + dD
where a, b, c and d are the stoichiometric coefficients of compounds A, B, C and D, the equilibrium constant Kp is determined by the following expression:
Where Px is the partial pressure of each of the components once equilibrium has been reached and they are expressed in atmospheres. The equilibrium constant Kp depends solely on temperature and is dimensionless.
In the case of the reaction:
2 HI (g) ⇔ H₂ (g) + I₂ (g)
the equilibrium constant Kp is determined by the following expression:
The system comes to equilibrium at 425 °C, and
- PHI = 0.794 atm
- PH2 = 0.0685 atm
- PI2 = 0.0685 atm
Replacing:
Kp=7.44*10⁻³
<u><em>The value of Kp at this temperature is 7.44*10⁻³</em></u>
False, as oceans can act as carbon sinks along with forests.
It has a double C=C bond so that means it's unsaturated, but it can also be a cyclic compound with only simple C-C bonds