Answer:
The lever arm could decrease or increase depending of the initial angle.
Explanation:
The lever arm d is calculated by:
d = rsin(θ)
where r is the radius and θ the angle between the force and the radius.
So, the increse or decrees of d depends of the sin of the angle θ, if the initial angle is greather than 90° and the angle decrease to an angle closer to 90°, the lever arm will increase but if the initial angle is 90° or lower and the angle decrease, the lever arm will decrease.
Answer:
Matter is anything that has mass and occupies space. The flame itself is a mixture of gases (vaporized fuel, oxygen, carbon dioxide, carbon monoxide, water vapor, and many other things) and so is matter. <em><u>The light produced by the flame is energy, not matter.</u></em>
<em><u></u></em>
Power= current*voltage or P=IV
so 16 watts=I*7 volts
divide on both sides to isolate I so you get
I= 16/7 which is about 2.3 amps
Answer: f=150cm in water and f=60cm in air.
Explanation: Focal length is a measurement of how strong light is converged or diverged by a system. To find the variable, it can be used the formula:
= (nglass - ni)( - ).
nglass is the index of refraction of the glass;
ni is the index of refraction of the medium you want, water in this case;
R1 is the curvature through which light enters the lens;
R2 is the curvature of the surface which it exits the lens;
Substituting and calculating for water (nwater = 1.3):
= (1.5 - 1.3)( - )
= 0.2()
f = = 150
For air (nair = 1):
= (1.5 - 1)( - )
f = = 60
In water, the focal length of the lens is f = 150cm.
In air, f = 60cm.
Answer:
The work done by this engine is 800 cal
Explanation:
Given:
100 g of water
120°C final temperature
22°C initial temperature
30°C is the temperature of condensed steam
Cw = specific heat of water = 1 cal/g °C
Cg = specific heat of steam = 0.48 cal/g °C
Lw = latent heat of vaporization = 540 cal/g
Question: How much work can be done using this engine, W = ?
First, you need to calculate the heat that it is necessary to change water to steam:
Here, mw is the mass of water
Now, you need to calculate the heat released by the steam:
The work done by this engine is the difference between both heats: