Answer:
Step-by-step explanation:
A function satisfying the equation is said to be an even function. This denomination comes from the fact that the same relation is satisfied for functions of the form with even. Observe that if is twice differentiable we can derivate using the chaing rule as follows:
implies
Applying the chain rule again we have:
implies
So we have that function is also an even function.
Answer:
x = {nπ -π/4, (4nπ -π)/16}
Step-by-step explanation:
It can be helpful to make use of the identities for angle sums and differences to rewrite the sum:
cos(3x) +sin(5x) = cos(4x -x) +sin(4x +x)
= cos(4x)cos(x) +sin(4x)sin(x) +sin(4x)cos(x) +cos(4x)sin(x)
= sin(x)(sin(4x) +cos(4x)) +cos(x)(sin(4x) +cos(4x))
= (sin(x) +cos(x))·(sin(4x) +cos(4x))
Each of the sums in this product is of the same form, so each can be simplified using the identity ...
sin(x) +cos(x) = √2·sin(x +π/4)
Then the given equation can be rewritten as ...
cos(3x) +sin(5x) = 0
2·sin(x +π/4)·sin(4x +π/4) = 0
Of course sin(x) = 0 for x = n·π, so these factors are zero when ...
sin(x +π/4) = 0 ⇒ x = nπ -π/4
sin(4x +π/4) = 0 ⇒ x = (nπ -π/4)/4 = (4nπ -π)/16
The solutions are ...
x ∈ {(n-1)π/4, (4n-1)π/16} . . . . . for any integer n
Answer:
(0.767,0.833)
Step-by-step explanation:
The 95% confidence interval for population proportion p can be computed as
The z-value associated with 95% confidence level is 1.96.
whereas p=x/n
We are given that x=440 and n=550.
p=440/550=0.8
Thus, the required confidence interval is
0.767<P<0.833 (rounded to 3 decimal places)
Hence, we are 95% confident that our true population proportion will lie in the interval (0.767,0.833)