Answer:
Option D. 0.115 M
Explanation:
The following data were obtained from the question:
Mass of CuSO4 = 36.8 g
Volume of solution = 2 L
Molar mass of CuSO4 = 159.62 g/mol
Molarity of CuSO4 =..?
Next, we shall determine the number of mole in 36.8 g of CuSO4.
This can be obtained as shown below:
Mass of CuSO4 = 36.8 g
Molar mass of CuSO4 = 159.62 g/mol
Mole of CuSO4 =.?
Mole = mass /Molar mass
Mole of CuSO4 = 36.8 / 159.62
Mole of CuSO4 = 0.23 mole
Finally, we shall determine the molarity of the CuSO4 solution as illustrated below:
Mole of CuSO4 = 0.23 mole
Volume of solution = 2 L
Molarity of CuSO4 =..?
Molarity = mole /Volume
Molarity of CuSO4 = 0.23 / 2
Molarity of CuSO4 = 0.115 M
Therefore, the molarity of the CuSO4 solution is 0.115 M.
The last question depends on the scientific method.
Scientific Method
1. Make an observation of what u are testing 2. Form a question about ur observations. 3. Make a hypothesis 4. Conduct your experiment 5. Record information and results.
The first question depends what you will need to use first for the experiment.
Explanation:
Whenever we need to make a dilute solution of an acid then it is necessary to add water or non-acidic component into the acid first. This is because addition of water or non-acidic component directly into the acid could be highly exothermic in nature.
As a result, the acid can splutter and can cause burning of skin and other serious damage.
So, in order to avoid such type of damage the addition of water or non-acidic component into the acid actually helps to minimize the heat generated.
Thus, we can conclude that correct order of steps for making a more dilute solution of an acid is that either add all of the water or non-acid component first, or add a significant portion, before adding the acid to the mixture.
Bases produce hydroxide ions, while acids produce hydrogen ions.
Bases have a pH of above 7, and are bitter and slippery.
Answer: <span>c. hydroxide ions</span>