Hey there! :D
Yes, indeed! Magnetic is a form of energy. It pushes or pulls to forces together. A lot of this energy is through waves, and opposite and like poles.
I hope this helps!
~kaikers
Answer:
<em>Infrared telescope and camera</em>
<em></em>
Explanation:
An infrared telescope uses infrared light to detect celestial bodies. The infrared radiation is one of the known forms of electromagnetic radiation. Infrared radiation is given off by a body possessing some form of heat. All bodies above the absolute zero temperature in the universe radiates some form of heat, which can then be detected by an infrared telescope, and infrared radiation can be used to study or look into a system that is void of detectable visible light.
Stars are celestial bodies that are constantly radiating heat. In order to see a clearer picture of the these bodies, <em>Infrared images is better used, since they are able to penetrate the surrounding clouds of dust,</em> and have located many more stellar components than any other types of telescope, especially in dusty regions of star clusters like the Trapezium cluster.
Answer:
68.8 N
Explanation:
From the question given above, the following data were obtained:
Mass (m) of box = 18 Kg
Coefficient of friction (μ) = 0.39
Force of friction (F) =?
Next, we shall determine the normal force of the box. This is illustrated below:
Mass (m) of object = 18 Kg
Acceleration due to gravity (g) = 9.8 m/s²
Normal force (N) =?
N = mg
N = 18 × 9.8
N = 176.4 N
Finally, we shall determine the force of friction experienced by the object. This is illustrated below:
Coefficient of friction (μ) = 0.39
Normal force (N) = 176.4 N
Force of friction (F) =?
F = μN
F = 0.39 × 176.4
F = 68.796 ≈ 68.8 N
Thus, the box experience a frictional force of 68.8 N.
Answer:
speed = 7.9 m/s
Explanation:
speed = total distance / time taken
speed = 300 / 38
speed = 7.89473684 m/s
to the nearest tenth
speed = 7.9 m/s
The image of the water tower and the houses is in the attachment.
Answer: (a) P = 245kPa;
(b) P = 173.5 kPa
Explanation: <u>Gauge</u> <u>pressure</u> is the pressure relative to the atmospheric pressure and it is only dependent of the height of the liquid in the container.
The pressure is calculated as: P = hρg
where
ρ is the density of the liquid, in this case, water, which is ρ = 1000kg/m³;
When it is full the reservoir contains 5.25×10⁵ kg. So, knowing the density, you know the volume:
ρ =
V = ρ/m
V =
V = 525 m³
To know the height of the spherical reservoir, its diameter is needed and to determine it, find the radius:
V =
r =
r = 5.005 m
diameter = 2*r = 10.01m
(a) Height for House A:
h = 15 + 10.01
h = 25.01
P = hρg
P = 25.01.10³.9.8
P = 245.10³ Pa or 245kPa
(b) h = 25 - 7.3
h = 17.71
P = hρg
P = 17.71.1000.9.8
P = 173.5.10³ Pa or 173.5 kPa