Answer:
Four substitution products are obtained. The carbocation that forms can react with either nucleophile (H2O or CH3OH) from either the top or bottom side of the molecule
Explanation:
An SN1 reaction usually involves the formation of a carbocation in the slow rate determining step. This carbocation is now attacked by a nucleophile in a subsequent fast step to give the desired product.
However, the product is obtained as a racemic mixture because the nucleophile may attack from the top or bottom of the carbocation hence both attacks are equally probable.
The attacking nucleophile in this case may be water or CH3OH
Mole fraction of Oxygen=0.381
Mole fraction of Oxygen= (range of moles of oxygen) ÷(general moles)
also, mole fraction of oxygen = (partial stress of oxygen) ÷ (total strain)
consequently , mole fraction of Oxygen= (2.31 atm)÷(2.31 atm + 3.75 atm)
= 0.381
The mole fraction may be calculated by means of dividing the variety of moles of 1 element of a solution by the entire quantity of moles of all the additives of a solution. It is cited that the sum of the mole fraction of all of the components inside the solution should be identical to 1.
Mole fraction is a unit of awareness. in the solution, the relative amount of solute and solvents are measured by way of the mole fraction and it's far represented through “X.” The mole fraction is the variety of moles of a selected aspect inside the answer divided by way of the entire range of moles in the given answer.
Mole fraction is the ratio between the moles of a constituent and the sum of moles of all ingredients in a mixture. Mass fraction is the ratio between the mass of a constituent and the full mass of a mixture.
The question is incomplete. Please read below to find the missing content.
Assuming that only the listed gases are present, what would the mole fraction of oxygen gas be for each of the following situations? A gas sample of 2.31 atm of oxygen gas and 3.75 atm of hydrogen gas react to form water vapor. Assume the volume of the container and the temperature inside the container does not change.
Learn more about the mole fraction here brainly.com/question/14783710
#SPJ1
Answer: The moon
Explanation: hope this helps.
Answer:
Explanation:
The formula relating the mass m of a sample and the heat q to vaporize it is
q = mL, where L is the latent heat of vaporization.