The ideal mechanical advantage (IMA) can be determined by the following equation:
IMA= Input distance/Output distance
The Input distance and Output distance are:
Input distance=220 meters
Output distance=110 meters
When you substitute in the equation of the ideal mechanical advantage (IMA), you obtain:
IMA= Input distance/Output distance
IMA= 220 meters/110 meters
IMA=2
Answer:
Steel is almost 2.9 times heavier the aluminium.
Answer:
power emitted is 1.75 W
Explanation:
given data
length l = 5 cm = 5 × m
diameter d = 0.074 cm = 74 × m
total filament emissivity = 0.300
temperature = 3068 K
to find out
power emitted
solution
we find first area that is π×d×L
area = π×d×L
area = π×74 ××5 ×
area = 1162.3892 × m²
so here power emitted is express as
power emitted = E × σ × area × (temperature)^4
put here all value
power emitted = 0.300× 5.67 × 1162.3892 × × (3068)^4
power emitted = 1.75 W
Answer:
Explanation:
Given the following :
Speed (V) = speed of 2.30×10^7 m/s
Acceleration (a) = 1.70×10^13 m/s^2
Using the right hand rule provided by Lorentz law:
B = F / qvSinΘ
Where B = magnitude of the magnetic field
v = speed of the particle
Θ = 90° (perpendicular to the field)
q = charge of the particle
SinΘ = sin90° = 1
Note F = ma
Therefore,
B = ma / qvSinΘ
Mass of proton = 1.67 × 10^-27
Charge = 1.6 × 10^-19 C
B = [(1.67 × 10^-27) × (1.70 × 10^13)] / (1.6 × 10^-19) × (2.30 × 10^7) × 1
B = 2.839 × 10^-14 / 3.68 × 10^-12
B = 0.7715 × 10^-2
B = 7.72 × 10^-3 T
2) Magnetic field will be in the negative y direction according to the right hand thumb rule.
Since Velocity is in the positive z- direction, acceleration in the positive x - direction, then magnetic field must be in the negative y-direction.