Answer:
a = 3
b = 2
c = 0
d = -4
Step-by-step explanation:
Form 4 equations and solve simultaneously
28 = a(2)³ + b(2)² + c(2) + d
28 = 8a + 4b + 2c + d (1)
-5 = -a + b - c + d (2)
220 = 64a + 16b + 4c + d (3)
-20 = -8a + 4b - 2c + d (4)
(1) + (4)
28 = 8a + 4b + 2c + d
-20 = -8a + 4b - 2c + d
8 = 8b + 2d
d = 4 - 4b
Equation (2)
c = -a + b + d + 5
c = -a + b + 4 - 4b+ 5
c = -a - 3b + 9
28 = 8a + 4b + 2c + d (1)
28 = 8a + 4b + 2(-a - 3b + 9) + 4 - 4b
28 = 6a - 6b + 22
6a - 6b = 6
a - b = 1
a = b + 1
220 = 64a + 16b + 4c + d (3)
220 = 64(b + 1) + 16b + 4(-b - 1 - 3b + 9) + 4 - 4b
220 = 60b + 100
60b = 120
b = 2
a = 2 + 1
a = 3
c = -3 - 3(2) + 9
c = 0
d = 4 - 4(2)
d = -4
Answer:
20 feet
Step-by-step explanation:
1st piece = x
2nd piece = 2x
3rd piece = 6x
x+2x+6x=180
9x=180
x=20
so the first piece is 20 feet, the second is 40, and the third is 120.
The original motivation for choosing the degree as a unit of rotations
and angles is unknown. One theory states that it is related to the fact
that 360 is approximately the number of days in a year.[5] Ancient astronomers noticed that the sun, which follows through the ecliptic path over the course of the year, seems to advance in its path by approximately one degree each day