Answer:
44 g oxygen are needed.
Explanation:
Given data:
Mass of oxygen needed = ?
Mass of ammonia = 18.2 g
Solution:
Chemical equation:
4NH₃ + 5O₂ → 4NO + 6H₂O
Now we will calculate the number of moles of ammonia:
Number of moles = mass/molar mass
Number of moles = 18.2 g/ 17 g/mol
Number of moles = 1.1 mol
Now we will compare the moles of ammonia with oxygen from balance chemical equation.
NH₃ : O₂
4 : 5
1.1 : 5/4×1.1 = 1.375 mol
Mass of oxygen needed:
Mass = number of moles × molar mass
Mass = 1.375 mol × 32 g/mol
Mass = 44 g
The atomic number of Fluorine is 9
Valence (outer) electron configuration is : 2s²2p⁵
Therefore, it requires 1 electron in the p-orbital to complete its octet of 8 electrons.
Thus, the atom Fluorine generally will become <u>more </u>stable through the formation of an ionic chemical compound by accepting <u>1 </u> electron from another atom. This process will fill its outer energy level.
Ans: A) more, 1
Answer:
14.93 g
Explanation:
First we <u>convert 1.2 x 10²³ atoms of arsenic (As) into moles</u>, using <em>Avogadro's number</em>:
- 1.2 x 10²³ atoms ÷ 6.023x10²³ atoms/mol = 0.199 mol As
Then we can<u> calculate the mass of 0.199 moles of arsenic</u>, using its<em> molar mass</em>:
- 0.199 mol * 74.92 g/mol = 14.93 g
Thus, 1.2x10²³ atoms of arsenic weigh 14.93 grams.
The answer is flourine
flourine some what sounds like flow so
flourine is a flowing element