Answer:
It remains the same
Explanation:
It remains the same. This is because the number of protons doesn't change and the number of protons determines the atomic number.
Given Information:
Magnetic field = B = 1×10⁻³ T
Frequency = f = 72.5 Hz
Diameter of cell = d = 7.60 µm = 7.60×10⁻⁶ m
Required Information:
Maximum Emf = ?
Answer:
Maximum Emf = 20.66×10⁻¹² volts
Explanation:
The maximum emf generated around the perimeter of a cell in a field is given by
Emf = BAωcos(ωt)
Where A is the area, B is the magnetic field and ω is frequency in rad/sec
For maximum emf cos(ωt) = 1
Emf = BAω
Area is given by
A = πr²
A = π(d/2)²
A = π(7.60×10⁻⁶/2)²
A = 45.36×10⁻¹² m²
We know that,
ω = 2πf
ω = 2π(72.5)
ω = 455.53 rad/sec
Finally, the emf is,
Emf = BAω
Emf = 1×10⁻³*45.36×10⁻¹²*455.53
Emf = 20.66×10⁻¹² volts
Therefore, the maximum emf generated around the perimeter of the cell is 20.66×10⁻¹² volts
D. Speed and direction, this is because velocity is a vector quantity so has a magnitude and direction assigned to it because it is the rate of change of displacement.
A. Made of the marble.
the mass remains constant when you drop the marble but the rest of the variables change as the marble is dropped, therefore, the only constant variable is its mass.
Answer:
Micro and radio waves.
Lower energy.
Gamma rays.
Explanation:
The electromagnetic spectrum is the range of frequencies of electromagnetic radiation and their respective wavelengths.
Ionising radiation os defined as the energy required of photons of a wave to ionize atoms, causing chemical reactions.
The energy of the wave depends on both the amplitude and the frequency. If the energy of each wavelength is a discrete packet of energy, a high-frequency wave will deliver more of these packets per unit time than a low-frequency wave. In summary, the longer the wavelength, the lower the energy to ionise.
The velocity of a wave is directly proportional to the frequency of that wave.
c = f * lambda
Where,
c = velocity of the wave
f = frequency of the wave = 1/time
Lambda = wavelength.
From the above expression, the longer the wavelength, lambda the shorter the frequency.
Examples of waves with longer wavelengths are, micro and radio waves, while radiations with shorter wavelengths like gamma rays.