Answer:
force = 3000N
mass= 20 kg
now
F= ma
3000= 20×a
3000÷20=a
a=15
F= ma by newtons second law of motion
Answer:
Radiation is energy. It can come from unstable atoms that undergo radioactive decay, or it can be produced by machines. Radiation travels from its source in the form of energy waves or energized particles. There are different forms of radiation and they have different properties and effects.
Related information in Spanish (Información relacionada en español)
On this page:
Ionizing and non-ionizing radiation
Electromagnetic spectrum
Types of ionizing radiation
Periodic Table
Non-Ionizing and Ionizing Radiation
There are two kinds of radiation: non-ionizing radiation and ionizing radiation.
Non-ionizing radiation has enough energy to move atoms in a molecule around or cause them to vibrate, but not enough to remove electrons from atoms. Examples of this kind of radiation are radio waves, visible light and microwaves.
Ionizing radiation has so much energy it can knock electrons out of atoms, a process known as ionization. Ionizing radiation can affect the atoms in living things, so it poses a health risk by damaging tissue and DNA in genes. Ionizing radiation comes from x-ray machines, cosmic particles from outer space and radioactive elements. Radioactive elements emit ionizing radiation as their atoms undergo radioactive decay.
Radioactive decay is the emission of energy in the form of ionizing radiationHelpionizing radiationRadiation with so much energy it can knock electrons out of atoms. Ionizing radiation can affect the atoms in living things, so it poses a health risk by damaging tissue and DNA in genes.. The ionizing radiation that is emitted can include alpha particles, beta particles and/or gamma raysHelpgamma raysA form of ionizing radiation that is made up of weightless packets of energy called photons. Gamma rays can pass completely through the human body; as they pass through, they can cause damage to tissue and DNA.. Radioactive decay occurs in unstable atoms called radionuclides.
Explanation:
Answer:
- 602 mg of CO₂ and 94.8 mg of H₂O
Explanation:
The<em> yield</em> is measured by the amount of each product produced by the reaction.
The chemical formula of <em>fluorene</em> is C₁₃H₁₀, and its molar mass is 166.223 g/mol.
The <em>oxidation</em>, also know as combustion, of this hydrocarbon is represented by the following balanced chemical equation:
To calculate the yield follow these steps:
<u>1. Mole ratio</u>
<u />
<u>2. Convert 175mg of fluorene to number of moles</u>
- Number of moles = mass in grams / molar mass
<u>3. Set a proportion for each product of the reaction</u>
a) <u>For CO₂</u>
i) number of moles
ii) mass in grams
The molar mass of CO₂ is 44.01g/mol
- mass = number of moles × molar mass
- mass = 0.013686 moles × 44.01 g/mol = 0.602 g = 602mg
b) <u>For H₂O</u>
i) number of moles
ii) mass in grams
The molar mass of H₂O is 18.015g/mol
- mass = number of moles × molar mass
- mass = 0.00526 moles × 18.015 g/mol = 0.0948mg = 94.8 mg
The contribution to the nature of light-
Thomas Young - wave nature of light (double-slit experiment)
Max Planck - E = hv
Albert Einstein - a quantum theory of light
Thomas Young proposed the most important double-slit experiment which shows that light acts like a wave and shows the pattern of interferences.
Max Planck proposed that light is proportional to frequency. He gave the equation, E = hv, where E is the energy of light, h is Planck's constant, and v is the frequency.
Albert Einstein proposed the quantum theory of light. He determined that light exists in discrete quanta of energy called photons.
To learn more about the nature of light, visit: brainly.com/question/4423091
#SPJ9