Explanation:
Suppose you want to shine a flashlight beam down a long, straight hallway. Just point the beam straight down the hallway -- light travels in straight lines, so it is no problem. What if the hallway has a bend in it? You could place a mirror at the bend to reflect the light beam around the corner. What if the hallway is very winding with multiple bends? You might line the walls with mirrors and angle the beam so that it bounces from side-to-side all along the hallway. This is exactly what happens in an optical fiber.
The light in a fiber-optic cable travels through the core (hallway) by constantly bouncing from the cladding (mirror-lined walls), a principle called total internal reflection. Because the cladding does not absorb any light from the core, the light wave can travel great distances.
However, some of the light signal degrades within the fiber, mostly due to impurities in the glass. The extent that the signal degrades depends on the purity of the glass and the wavelength of the transmitted light (for example, 850 nm = 60 to 75 percent/km; 1,300 nm = 50 to 60 percent/km; 1,550 nm is greater than 50 percent/km). Some premium optical fibers show much less signal degradation -- less than 10 percent/km at 1,550 nm.
1
Answer:
a) 0.462 m/s^2
b) 31.5 rad/s
c) 381 rad
d) 135m
Explanation:
the linear acceleration is given by:
the angular speed is given by:
to calculate how many radians have the wheel turned we need the apply the following formula:
the distance is given by:
The amplitude is from the absolute value of the 0 point on the y-axis to the highest(peak) or lowest(troph) point of the wave. In this question, 3cm is the highest and -3cm is the lowest, so the amplitude is 3cm.
Answer:
a) V = 195.70 m/s
b) f=3.02 × 10⁻⁴ Hz
c) T = 3311.25 seconds
Explanation:
Given:
Wavelength, λ = 646 Km = 646000 m
Distance traveled = 3410 Km = 3410000 m
Time = 4.84 h = 4.84 × 3600 s = 17424 seconds
a) The speed (V) of the wave is given as
V = distance / time
V = 3410000 m/ 17424 seconds
or
V = 195.70 m/s
b) The frequency (f) of the wave is given as:
f = V / λ
f= 195.70 / 646000
f=3.02 × 10⁻⁴ Hz
c) The time period (T) is given as:
T = 1/ f
T = 1/ (3.02 × 10⁻⁴) Hz
T = 3311.25 seconds