<span>The jump from 1966 to 16347 is the largest one or simply we can say it is hard to lose the 3rd electron.Whereas, it is relatively easy to lose the first two electrons.
So there will be only 2 electrons in the outer most shell.
According to the information mentioned above we can conclude the </span><span>unknown element likely belongs to the second group.
</span><span>I2 = 1752 kj/mol</span>
This is a problem of conservation of momentum
Momentum before throwing the rock: m*V = 96.0 kg * 0.480 m/s = 46.08 N*s
A) man throws the rock forward
=>
rock:
m1 = 0.310 kg
V1 = 14.5 m/s, in the same direction of the sled with the man
sled and man:
m2 = 96 kg - 0.310 kg = 95.69 kg
v2 = ?
Conservation of momentum:
momentum before throw = momentum after throw
46.08N*s = 0.310kg*14.5m/s + 95.69kg*v2
=> v2 = [46.08 N*s - 0.310*14.5N*s ] / 95.69 kg = 0.434 m/s
B) man throws the rock backward
this changes the sign of the velocity, v2 = -14.5 m/s
46.08N*s = - 0.310kg*14.5m/s + 95.69kg*v2
v2 = [46.08 N*s + 0.310*14.5 N*s] / 95.69 k = 0.529 m/s
So, there should be two forces acting on the refrigerator: the applied force and the friction force.
The question mentioned that the friction force was set to zero, so the only effective force now would be the applied force.
We have an applied force of 400 N to the right, this means that:
<span>The magnitude of the net force is 400, directed to the right.</span>
Answer:
Mass of the sled in the snow 83.33 kg.
<u>Explanation</u>:
Given that,
Force applied to move the sled in the snow (F) = 75N
We know that
Newton's second law of motion is
F = ma (Or "force" is equal to "mass" times "acceleration".)
So if we move this around we can isolate mass and get mass
M = 83.33 kg
Mass of the sled in the snow <u>83.33 kg.</u>
The hero attending a funeral is safe behavior while the hero driving fast is riskier behavior