The function is in vertex form of a quadratic function.
Vertex form is f(x)=a(x-h)^2+k
The vertex is (h, k)
In this case, our vertex is (2, 2). The a value is positive which means that the graph points up. Since the graph points up, the vertex is the minimum, the lowest point of the graph. The range refers to y-values, so the range of the function is y/y>2. It can also be written as 2≤y<span>≤positive infinity.</span>
Answer:
Step-by-step explanation:
1. Given differential equation is
On integrating both sides, we will have
Hence, the solution of given differential equation can be given by
2. Given differential equation,
On integrating both sides, we will have
Hence, the solution of given differential equation is
Answer:
it's Rectangle
Step-by-step explanation:
I did the test and got this right.
Answer:
Step-by-step explanation:8
Answer:
im not positive but I think the answer is 7x+5