A. By ensuring they follow the scientific method
Answer:
So the mass of the second object M will be 1.951 kg
Explanation:
We have given mass of the first object and its velocity
Mass of the second object it is at rest so its velocity
From conservation of momentum we know that
Initial momentum = final momentum
So
M = 1.951 kg
Explanation:
Position-time graphs measure/express the position of a skater over time relative to the start or finish of the race (depends on how it is used). Note: are the skaters in line vertically or horizontally? Like is one directly behind the other or are they next to each other?
If the two skaters are in line horizontally with each other, then their position will be the same relative to the start or finish of the race. This means if one passes the other one, the position would be different for all times after they pass. On the graph, it would look like one single line at the start (as position is same) which splits into 2 (representing the new difference in position due to 1 passing the other.
If the two skaters are in line vertically, their lines on the graph will appear parallel to each other (assuming they are going same speed) because the position is changing at the same rate, one is just reaching the same point after the other. If the skater behind overtakes the one in front. The lines on the graph will cross and continue either in parallel but with the other line on top to represent the moment where their position is the same right before they pass and after, where the second skater is now in front.
Hope this helped!
Answer:
W = 1562.5 J
Explanation:
Path 1:
W₁ = F₁*d₁ = 385 N * 2.5 m = 962.5 J
Path 2:
W₂ = F₂*d₂ = 130 N * 10 m = 1300 J
Path 3:
W₃ = F₃*d₃ = (-350 N) * 2 m = - 700 J (opposite to the motion)
We get
W = W₁ + W₂ + W₃ = 962.5 J + 1300 J + (- 700 J) = 1562.5 J