The first model of the atom was developed by JJ Thomson in 1904, who thought that atoms were composed purely of negatively charged electrons. This model was known as the 'plum pudding' model.
This theory was then disproved by Ernest Rutherford and the gold foil experiment in 1911, where Rutherford shot alpha particles at gold foil, and noticed that some went through and some bounced back, implying the existence of a positive nucleus.
In 1913, Niels Bohr proposed a model of the atom where the electrons were contained within quantized shells that orbited the nucleus. This was because it was impossible for the cloud of negative electrons proposed by Rutherford to exist, as the negative electrons would be drawn to the positive nucleus, and the atom would collapse in on itself.
In 1926, the Austrian physicist Erwin Schrödinger created a quantum mechanical model of the atom by combining the equations for the behavior of waves with the de Broglie equation to generate a mathematical model for the distribution of electrons in an atom.
However the model used today is closest to the Bohr model of the atom, using the quantized shells to contain the electrons.
For more info:
http://chemistry.about.com/od/chemistryglossary/a/debroglieeqdef.htm
Answer:
Air pollution---> smog
Water pollution---> eutrophication
Land pollution---> contaminated soil
Light pollution---> sky glow
A “real” image occurs when light rays actually intersect at the image, and become inverted, or turned upside down. ... In flat, or plane mirrors, the image is a virtual image, and is the same distance behind the mirror as the object is in front of the mirror. The image is also the same size as the object.
It will use a lot more energy (electricity) to cool down the room. Because heat energy from outside the room can easily transfer into the room again if the room is not well insulated. So more energy is needed to cool down the room again
Answer:
0.67 s
Explanation:
This is a simple harmonic motion (SHM).
The displacement, , of an SHM is given by
A is the amplitude and is the angular frequency.
We could use a sine function, in which case we will include a phase angle, to indicate that the oscillation began from a non-equilibrium point. We are using the cosine function for this particular case because the oscillation began from an extreme end, which is one-quarter of a single oscillation, when measured from the equilibrium point. One-quarter of an oscillation corresponds to a phase angle of 90° or radian.
From trigonometry, if A and B are complementary.
At ,
So
At ,
The period, , is related to by