The minimum speed of the water must be 3.4 m/s
Explanation:
There are two forces acting on the water in the pail when it is at the top of its circular motion:
- The force of gravity, mg, acting downward (where m is the mass of the water and g the acceleration of gravity)
- The normal reaction, N also acting downward
Since the water is in circular motion, the net force must be equal to the centripetal force, so:
Where:
v is the speed of the pail
r = 1.2 m is the radius of the circle
The water starts to spill out when the normal reaction of the pail becomes zero:
N = 0
When this occurs, the equation becomes:
And substitutin the values of g and r, we find the minimum speed that the water must have in order not to spill out:
Learn more about circular motion:
brainly.com/question/2562955
brainly.com/question/6372960
#LearnwithBrainly
Here we have perfectly inelastic collision. Perfectly inelastic collision is type of collision during which two objects collide, stay connected and momentum is conserved. Formula used for conservation of momentum is:
In case of perfectly inelastic collision v'1 and v'2 are same.
We are given information:
m₁=0.5kg
m₂=0.8kg
v₁=3m/s
v₂=2m/s
v'₁=v'₂=x
0.5*3 + 0.8*2 = 0.5*x + 0.8*x
1.5 + 1.6 = 1.3x
3.1 = 1.3x
x = 2.4 m/s
The change in angular displacement as a function of time is the definition given for angular velocity, this is mathematically described as
Here,
= Angular displacement
t = time
The angular velocity is given as
PART A) The angular velocity in SI Units will be,
PART B) From our first equation we can rearrange to find the angular displacement then
Replacing,
<h2>
Answer: It is highly flammable.</h2>
Explanation:
Liquid oxygen is created from oxygen atoms that have been forced to assume the liquid state due to <u>compression (change of pressure) and temperature modification.
</u>
Specifically this is achieved by cooling the oxygen enough to change it to its liquid state. So,<u> as the temperature drops, the atoms move more slowly because they have less energy.
</u>
In this sense, in the liquid state it is easier to store and mobilize oxygen, taking into account that it is a highly flammable gas.