Answer:
1. t = 0.0819s
2. W = 0.25N
3. n = 36
4. y(x , t)= Acos[172x + 2730t]
Explanation:
1) The given equation is
The relationship between velocity and propagation constant is
v = 15.87m/s
Time taken,
t = 0.0819s
2)
The velocity of transverse wave is given by
mass of string is calculated thus
mg = 0.0125N
m = 0.00128kg
0.25N
3)
The propagation constant k is
hence
0.036 m
No of wavelengths, n is
n = 36
4)
The equation of wave travelling down the string is
Answer:
Distance: 21 yd, displacement: 15 yd, gain in the play: 12 yd
Explanation:
The distance travelled by Sam is just the sum of the length of each part of Sam's motion, regardless of the direction. Initially, Sam run from the 3 yd line to the 15 yd line, so (15-3)=12 yd. Then, he run also 9 yd to the right. Therefore, the total distance is
d = 12 + 9 = 21 yd
The displacement instead is a vector connecting the starting point with the final point of the motion. Sam run first 12 yd straight ahead and then 9 yd to the right; these two motions are perpendicular to each other, so we can find the displacement simply by using Pythagorean's theorem:
Finally, the yards gained by Sam in the play are simply given by the distance covered along the forward-backward direction only. Since Sam only run from the 3 yd line to the 15 yd line along this direction, then the gain in this play was
d = 15 - 3 = 12 yd
Answer:
7.24 Ω
Explanation:
Power = energy / time = 195 J / 9.81 = 19.88 W
and power = V² / R
R resistance = 12 V² / 19.88 W = 7.24 Ω
The same number of electron shells, the atomic number is given to each individual element, same as the atomic mass, and properties have nothing to do with groups