Yes your choices of B C D are right
Answer:
5746.0 mL.
Explanation:
We can use the general law of ideal gas:<em> PV = nRT.</em>
where, P is the pressure of the gas in atm.
V is the volume of the gas in L.
n is the no. of moles of the gas in mol.
R is the general gas constant,
T is the temperature of the gas in K.
If n and P are constant, and have two different values of V and T:
<em>V₁T₂ = V₂T₁</em>
<em></em>
V₁ = 6193.0 mL, T₁ = 62.3°C + 273 = 335.3 K.
V₂ = ??? mL, T₂ = 38.1°C + 273 = 311.1 K.
<em>∴ V₂ = V₁T₂/T₁ </em>= (6193.0 mL)(311.1 K)/(335.3 K) = <em>5746.0 mL.</em>
Given :
A 3.82L balloon filled with gas is warmed from 204.9K to 304.8 K.
To Find :
The volume of the gas after it is heated.
Solution :
Since, their is no information about pressure in the question statement let us assume that pressure is constant.
Now, we know by ideal gas equation at constant pressure :
Hence, this is the required solution.
<span>You use the Henderson - Hasselbalch equation
pH = pKa + log ([salt]/[acid])
pKa = -log (8.2*10^-5) = 4.081
pH = 4.081 + (0.590/0.190)
pH = 4.081 + log 3.105
pH = 4.081 + 0.49206
pH = 4.573</span>