I don't know what the exact word is, but I do know that the bigger an objects mass is the more it will attract other objects toward it, mainly smaller objects with less mass. it might be gravity or something around those lines....is it a multiple choice question?
Answer:
Yes is large enough
Explanation:
We need to apply the second Newton's Law to find the solution.
We know that,
And we know as well that
Replacing the aceleration value in the equation force we have,
Substituting our values we have,
The weight of the person is then,
<em>We can conclude that force on the ball is large to lift the ball</em>
Answer: T= 715 N
Explanation:
The only external force (neglecting gravity) acting on the swinging mass, is the centripetal force, which. in this case, is represented by the tension in the string, so we can say:
T = mv² / r
At the moment that the mass be released, it wil continue moving in a straight line at the same tangential speed that it had just an instant before, which is the same speed included in the centripetal force expression.
So the kinetic energy will be the following:
K = 1/2 m v² = 15. 0 J
Solving for v², and replacing in the expression for T:
T = 1.9 Kg (3.97)² m²/s² / 0.042 m = 715 N
The driver is tooling along in his snowmobile, pointed north,
at 8.5 m/s.
He's carrying the flares with him, so the flares are also moving north
at 8.5 m/s.
When he fires the flare straight up, it has a vertical velocity of 4.3 m/s
straight up, and a horizontal velocity of 8.5 m/s towards the north.
The magnitude of the net velocity is √(4.3² + 8.5²) .
That's about 9.53 m/s, at some angle between straight up
and straight north.
The angle above horizontal is the angle that has a tangent of 4.3/8.5 .
I'll let you work out the angle.
Answer: 0.076 m/s
Explanation:
Momentum is conserved:
m v = (m + M) V
(0.111 kg) (55 m/s) = (0.111 kg + 80. kg) V
V = 0.076 m/s
After catching the puck, the goalie slides at 0.076 m/s.