Answer:
The correct answer is B.
Explanation:
The molecule of water has 2 atoms of hydrogen and 1 atom of oxygen.
The ratio of masses are given as:
This illustrates the law of definite proportions which is also known as law of constant compositions .
The law states that 'the elements combining to form compound always combine in a fixed ratio by their mass.'
Whereas :
Law of multiple proportion states that when two elements combine with each other to form more than one compounds , the mass of one element with respect to the fixed mass of another element are in ratio of small whole numbers.
Law of conservation of mass states that mass can neither be created nor be destroyed but it can only be transformed from one form to another form.
In a balanced chemical reaction ,total mass on the reactant side must be equal to the total mass on the product side.
Law of conservation of energy states that energy can neither be created nor be destroyed but it can only be transformed from one form to another form.
Answer:
1.181 × 10²⁴ molecules CO₂
General Formulas and Concepts:
<u>Chemistry - Atomic Structure</u>
- Reading a Periodic Table
- Using Dimensional Analysis
- Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
Explanation:
<u>Step 1: Define</u>
86.34 g CO₂
<u>Step 2: Identify Conversion</u>
Avogadro's Number
Molar Mass of C - 12.01 g/mol
Molar Mass of O - 16.00 g/mol
Molar Mass of CO₂ - 12.01 + 2(16.00) = 44.01 g/mol
<u>Step 3: Convert</u>
<u /> = 1.18141 × 10²⁴ molecules CO₂
<u>Step 4: Check</u>
<em>We are given 4 sig figs. Follow sig fig rules and round.</em>
1.18141 × 10²⁴ molecules CO₂ ≈ 1.181 × 10²⁴ molecules CO₂
Recibí tus puntos, lo siento mucho por esto, pero, adiós perra
Explanation:
covalent bond enjoy your anseer
Answer:
Extensive properties vary with the amount of the substance and include mass, weight, and volume. Intensive properties, in contrast, do not depend on the amount of the substance; they include color, melting point, boiling point, electrical conductivity, and physical state at a given temperature.