.
<h3>Explanation</h3>
The Stefan-Boltzmann Law gives the energy radiation <em>per unit area</em> of a black body:
where,
- the total power emitted,
- the surface area of the body,
- the Stefan-Boltzmann Constant, and
- the temperature of the body in degrees Kelvins.
.
.
.
Keep as many significant figures in as possible. The error will be large when is raised to the power of four. Also, the real value will be much smaller than since the emittance of a human body is much smaller than assumed.
Yo sup??
magnitude of original vector is 5 units.
angle made with x axis is 67°
horizontal component=5*cos67°
=5*0.4
=2 units (approx)
Therefore the correct answer is option B
Hope this helps
Answer:
cells
Explanation:
they are the smallest living organisms
Answer: 56.72 ft/s
Explanation:
Ok, initially we only have potential energy, that is equal to:
U =m*g*h
where g is the gravitational acceleration, m the mass and h the height.
h = 50ft and g = 32.17 ft/s^2
when the watermelon is near the ground, all the potential energy is transformed into kinetic energy, and the kinetic energy can be written as:
K = (1/2)*m*v^2
where v is the velocity.
Then we have:
K = U
m*g*h = (m/2)*v^2
we solve it for v.
v = √(2g*h) = √(2*32.17*50) ft/s = 56.72 ft/s
Answer:
ρ/ρ2 = 3 / R₀ the two densities are different
Explanation:
Density is defined as
ρ = M / V
As the nucleus is spherical
V = 4/3 π r³
Let's replace
ρ = A / (4/3 π R₀³)
ρ = ¾ A / π R₀³
b)
ρ2 = F / area
The area of a sphere is
A = 4π R₀²
ρ2 = F / 4π R₀²
ρ2 = F / 4π R₀²
Atomic number is the number of protons in the nucleon in not very heavy nuclei. This number is equal to the number of neutrons, but changes in heavier nuclei, there are more neutrons than protons.
Let's look for the relationship of the two densities
ρ/ρ2 = ¾ A / π R₀³ / (F / 4π R₀²)
ρ /ρ2 = 3 (A / F) (1 / R₀)
In this case it does not say that the nucleon number is A (F = A), the relationship is
ρ/ρ2 = 3 / R₀
I see that the two densities are different