The Bohr Model, which was proposed by Niels Bohr in 1913
Yes, the atoms of the elements do have different masses but the same volume
The energy produced by burning : -32.92 kJ
<h3>Further explanation</h3>
Delta H reaction (ΔH) is the amount of heat change between the system and its environment
(ΔH) can be positive (endothermic = requires heat) or negative (exothermic = releasing heat)
The enthalpy and heat(energy) can be formulated :
The enthalpy of combustion of naphthalene (MW = 128.17 g/mol) is -5139.6 kJ/mol.
The energy released for 0.8210 g of naphthalene :
For Ar :
1 mol ------------ 22.4 L ( at STP )
7.6 mol ---------- x L
x = 7.6 * 22.4
x = 170.24 L
-----------------------------------------------------------------
For C2H3:
1 mol ------------ 22.4 ( at STP)
0.44 mol --------- y L
y = 0.44 * 22.4
y = 9.856 L
hope this helps !.
Answer:
b)15.0°C
Explanation:
Specific Heat of Water=4.2 J/g°C
This means, that 1 g of Water will take 4.2 J of energy to increase its temperature by 1°C.
∴80 g Water will take 80×4.2 J of energy to increase its temperature by 1°C.
80×4.2 J=336 J
Total Energy Provided=1680 J
The temperature increase=\frac{\textrm{Total energy required}}{\textrm{energy required to increase temperature by one degree}}
Temperature increase=
=5°C
Initial Temperature =10°C
Final Temperature=Initial + Increase in Temperature
=10+5=15°C