Explanation:
Given that,
Size of object, h = 0.066 m
Object distance from the lens, u = 0.210 m (negative)
Focal length of the converging lens, f = 0.14 m
If v is the image distance from the lens, we can find it using lens formula as follows :
(a) Magnification,
(b) Magnification,
h' is image height
Hence, this is the required solution.
Answer:
Plasma can be artificially generated by heating a neutral gas or subjecting it to a strong electromagnetic field to the point where an ionized gaseous substance becomes increasingly electrically conductive.
Answer:
10500 J/kg/*C
Explanation:
Quantity of heat required=mass of substance x specific heat capacity x change in temperature
Quantity of heat required=0.25 x 4200 x [30-20]
Quantity of heat required=0.25 x 4200 x 10
Quantity of heat required=10500 J/kg/*C
<span>Visible satellite images are like photos which are dependent on visible
light from the sun so they work best during the day. The sensor works by
detecting radiation within the range that wavelength is visible. Because of
this, the rays is usually seen as reaching earth from the East. </span>
Answer:
A) i) using statistical theory of floxy
(Pa)c = 0.816
(Pb)c = 0.816
ii) using Carothers theory
( Pc ) = 0.917
B) To Obtain the measured value of critical extent of reaction ( 0.866) 1 mol of Glycerol will react with 1 mol of dicarboxylic acid, but the same can not be applied to our obtained value because our stoichiometry is different
Explanation:
Given data :
Polycondensation reaction takes place between : 1.2 moles of dicarboxylic acid , 0.4 moles of glycerol and 0.6 moles of ethylene glycol
A) Calculate the critical extents of reaction for gelation
i) using statistical theory of floxy
(Pa)c = 0.816
(Pb)c = 0.816
ii) using Carothers theory
( Pc ) = 0.917
attached below is the detailed solution
B) To Obtain the measured value of critical extent of reaction ( 0.866) 1 mol of Glycerol will react with 1 mol of dicarboxylic acid, but the same can not be applied to our obtained value because our stoichiometry is different