Answer:
Evaporation from the hydrosphere provides the medium for cloud and rain formation in the atmosphere. The atmosphere brings back rainwater to the hydrosphere. The atmosphere provides the geosphere with heat and energy needed for rock breakdown and erosion. The geosphere, in turn, reflects the sun's energy back into the atmosphere.
Explanation:
Answer:
[Ni(CN)4]2- square planar
[NiCl4]2- tetrahedral
Explanation:
For a four coordinate complex such as [Ni(CN)4]2- and [NiCl4]2-, we can decide its geometry by closely considering its magnetic properties. Both of the complexes are d8 complexes which could be found either in the tetrahedral or square planar crystal field depending on the nature of the ligand.
CN^- being a strong field ligand leads to the formation of a square planar diamagnetic d8 complex of Ni^2+. Similarly, Cl^- being a weak field ligand leads to the formation a a tetrahedral paramagnetic d8 complex of Ni^+ hence the answer given above.
Okay thanks for the update I will give you a call when you get home thanks
Atomic Number of Lithium is 3, so it has 3 electrons in its neutral state. Also, Li₂ will have 6 electrons. But the chemical formula we are given has a negative charge on it (i.e Li₂⁻) so there is an additional electron (RED) present on this compound. So, the total number of electrons are 7. The
MOT diagram for this compound is shown below. According to diagram we are having 4 electrons in Bonding Molecular Orbitals (
BMO) and 3 electrons in Anti-Bonding Molecular Orbitals (
ABMO). Bond Order is calculated as,
Bond Order = (# of e⁻s in BMO - # of e⁻s in ABMO) ÷ 2
Bond Order = (4 - 3) ÷ 2
Bond Order = 1 ÷ 2
Or,
Bond Order = 1/2Or,
Bond Order = 0.5
Answer:
Q = -33.6kcal .
Explanation:
Hello there!
In this case, according to the equation for the calculation of the total heat of reaction when a fixed mass of a fuel like ethane is burnt, we can write:
Whereas n stands for the moles and the other term for the enthalpy of combustion. Thus, for the required total heat of reaction, we first compute the moles of ethane in 3 g as shown below:
Next, we understand that -337.0kcal is the heat released by the combustion of 1 mole of ethane, therefore, to compute Q, we proceed as follows:
Best regards!