Answer:
The correct answer is d.hydrogen peroxide H₂O₂H₂O₂
Explanation:
Substances can be found in nature in different <em>aggregation states. </em>
Agreggation states can be liquid, gas or solid.
The problem asks about which substance can be found in room temperature as <em>liquid.</em> Each subtances has different physical and chemical properties that determines in which state you can find them at room temperature.
Hydrogen peroxide is the only substance listed that is in liquid state at room temperature, all other substances are in gas state at room temperature.
The balanced equation for the above reaction is
2NaOH + H₂SO₄ ---> Na₂SO₄ + 2H₂O
stoichiometry of NaOH to H₂SO₄ is 2:1
number of NaOH moles required-0.5000 M / 1000 mL/L x 21.17 mL = 0.010585 mol
According to stoichiometry, acid moles required are 1/2 of the base moles reacted
Therefore number of H₂SO₄ moles reacted - 0.010585 /2 mol
Number of moles in 42.35 mL of H₂SO₄ - 0.010585 /2 mol
Therefore in 1 L solution - (0.010585) /2 / 42.35 mL x 1000 mL/L = 0.125 M
Molarity of H₂SO₄ - 0.125 M
Answer:
A decrease in [H3O+] and an increase in pH (option a)
Explanation:
Equilibrium of water is shown in this equation
2H₂O ⇄ H₃O⁺ + OH⁻
When you add NaOH, you are modifying [OH⁻]
NaOH → Na⁺ + OH⁻
In equilibrium of water, the [OH⁻] increases
2H₂O ⇄ ↓ H₃O⁺ + OH⁻ ↑
As the [OH⁻] increases, by Le Chatellier, the equilibrium tends to decrease [H₃O⁺].
If the [OH⁻] is higher, pH is also high so the solution of water and sodium hydroxide would be totally basic.
Given:
<span> 2.1 moles of chlorine gas (Cl2) at standard temperature and pressure (STP)
Required:
volume of CL2
Solution:
Use the ideal gas law
PV = nRT
V = nRT/P
V = (2.1 moles Cl2) (0.08203 L - atm / mol - K) (273K) / (1 atm)
V = 47 L</span>
The word elliptical refers to an Oval.