Cell division is the process by which a parent cell divides into two or more daughter cells.[1]Cell division usually occurs as part of a larger cell cycle. In eukaryotes, there are two distinct types of cell division: a vegetative division, whereby each daughter cell is genetically identical to the parent cell (mitosis),[2] and a reproductive cell division, whereby the number of chromosomes in the daughter cells is reduced by half to produce haploid gametes(meiosis). Meiosis results in four haploid daughter cells by undergoing one round of DNA replication followed by two divisions. Homologous chromosomes are separated in the first division, and sister chromatids are separated in the second division. Both of these cell division cycles are used in the process of sexual reproduction at some point in their life cycle. Both are believed to be present in the last eukaryotic common ancestor.
Prokaryotes (bacteria) undergo a vegetative cell division known as binary fission, where their genetic material is segregated equally into two daughter cells. All cell divisions, regardless of organism, are preceded by a single round of DNA replication.
For simple unicellular microorganisms such as the amoeba, one cell division is equivalent to reproduction – an entire new organism is created. On a larger scale, mitotic cell division can create progeny from multicellular organisms, such as plants that grow from cuttings. Mitotic cell division enables sexually reproducing organisms to develop from the one-celled zygote, which itself was produced by meiotic cell division from gametes. After growth, cell division by mitosis allows for continual construction and repair of the organism.[3] The human body experiences about 10 quadrillion cell divisions in a lifetime.[4]
The primary concern of cell division is the maintenance of the original cell's genome. Before division can occur, the genomic information that is stored in chromosomes must be replicated, and the duplicated genome must be separated cleanly between cells.[5] A great deal of cellular infrastructure is involved in keeping genomic information consistent between generations.
UNVY-A is supoorted by other things u dint need more chemicals
The answer is; Benedict’s reagent
It is used to test for reducing sugars. In presence of these sugars, the reagent, that is blue in color, turns different shaded of red (to brick red), depending on the amount of reducing sugars in the solution. It is important to note that the solution has to be heated.
It’s B because accordin to the Law of Conservation of Energy, energy cannot be created or destroyed. However, energy can transform and be conserved.
Answer:
i feel like there should be more to the question so you can get a better answer but i will say direct
Explanation:
sorry if im wrong