Sewage. If thats not it, then I need to see your choices. :)
Ok. PEMDAS tells us to take care of the square first. When we do that, the denominator becomes
(6.4)^2 x 10^12
= 40.96 x 10^12 .
Now it's just a matter of mashing out the fraction.
The 'mantissa' (the number part) is
6/40.96 = 0.1465
and the order of magnitude is
10^24 / 10^12 = 10^12 .
Put it all together and you've got
1.465 x 10^11 .
Answer:
d = 19.796m
Explanation:
Since the ball is in the air for 4.02 seconds, the ball should reach the maximum point from the ground in half the total time, therefore, t=2.01s to reach maximum height. At the maximum height, the velocity in the y-direction is 0.
So we know t=2.01, vi=0, g=a=9.8m/s and we are solving for d.
Next, you look for a kinematic equation that has these parameters and the one you should choose is:
Now by substituting values in, we get
d = 19.796m
Mass m = 68 kg
center of gravity from his palms x = 0.7 m
center of gravity from his feet x ' = 1 m
forces exerted by the floor on his palms and feet are F and F ' respectively.
with respect to palms :---------------------
( F*0 ) - (W * x ) + [ F ' * (x+x') ] = 0
-mg*0.7 + F ' * 1.7 = 0 where W = weight = mg
F ' * 1.7 = mg * 0.7
F ' = mg * 0.7 / 1.7
= 68 *9.8 * ( 0.7 / 1.7 )
= 274.4 N
with respect to feet :--------------------
( F ' * 0 ) -( W* x ' ) + [F * ( x + x') ] = 0
-mg*1 + [ F * 1.7 ]= 0
F = mg / 1.7
= 392 N
Answer:
0.5 eV
Explanation:
= Initial potential energy =
= Final potential energy
= Initial width
= Final width =
Energy of an electron in a one-dimensional trap is given by
From the equation we get
So,
The ground state energy will be 0.5 eV