Answer:
(3, 50) and (14,303)
Step-by-step explanation:
Given the system of equations;
y=23x–19 ....1
x²–y= – 6x–23 ...2
Substitute 1 into 2;
x²–(23x-19)= – 6x–23
x²–23x+19= – 6x–23 .
x²-23x + 6x + 19 + 23 = 0
x² - 17x + 42 = 0
Factorize;
x² - 14x - 3x + 42 = 0
x(x-14)-3(x-14) = 0
(x-3)(x-14) = 0
x = 3 and 14
If x = 3
y = 23(3) - 19
y = 69-19
y = 50
If x = 14
y = 23(14) - 19
y = 322-19
y = 303
Hence the coordinate solutions are (3, 50) and (14,303)
5 wholes = 5
2 fifths = 2/5
5 - 2/5 = 4 3/5 (4 and 3 fifths)
Answer = 4 3/5
Check work:
4 3/5 + 2/5 = 5 (wholes)
Stack them on top of each other and find the common denominator then multiply to total the denominator. Ex. 1/4 denominator is 8. 4x2 is 8. So 1 times what equals 8. 1! Then you should a new fraction 8/8 which is equivalent to 1.
Easy divide the numbers 310 and 40 like this
310÷40
ANSWER
7.75
Answer:
a. 129 meters
Step-by-step explanation:
The given parameters of the tree and the point <em>B</em> are;
The horizontal distance between the tree and point <em>B</em>, x = 125 meters
The angle of depression from the top of the tree to the point <em>B</em>, θ = 46°
Let <em>h</em> represent the height of the tree
The horizontal line at the top of the tree that forms the angle of depression with the line of sight from the top of the tree to the point <em>B</em> is parallel to the horizontal distance from the point <em>B</em> to the tree, therefore;
The angle of depression = The angle of elevation = 46°
By trigonometry, we have;
tan(θ) = h/x
∴ h = x × tan(θ)
Plugging in the values of the variables gives;
h = 125 × tan(46°) ≈ 129.44
The height of the tree, h ≈ 129 meters