Given the density of ethanol = 0.79
Volume of ethanol = 75.0 mL
Calculating the mass if ethanol from density and volume:
Molar mass of ethanol = (2*atomic weight of C)+(6*atomic weight of H)+(1*atomic weight of O)
=(2*12g.mol) + (6*1g/mol) + (1*16g/mol)
=46g/mol
Moles of ethanol =
Volume of the solution = 250.0 mL
Converting the volume from mL ot L:
Molarity of ethanol in the solution =
Answer:
Explanation: When solutions of potassium iodide and lead nitrate are combined?
The lead nitrate solution contains particles (ions) of lead, and the potassium iodide solution contains particles of iodide. When the solutions mix, the lead particles and iodide particles combine and create two new compounds, a yellow solid called lead iodide and a white solid called potassium nitrate. Chemical Equation Balancer Pb(NO3)2 + KI = KNO3 + PbI2. Potassium iodide and lead(II) nitrate are combined and undergo a double replacement reaction. Potassium iodide reacts with lead(II) nitrate and produces lead(II) iodide and potassium nitrate. Potassium nitrate is water soluble. The reaction is an example of a metathesis reaction, which involves the exchange of ions between the Pb(NO3)2 and KI. The Pb+2 ends up going after the I- resulting in the formation of PbI2, and the K+ ends up combining with the NO3- forming KNO3. NO3- All nitrates are soluble. ... (Many acid phosphates are soluble.)
Assuming you are asking for the names of the elements in that formula , the answer is
carbon
hydrogen
chlorine
fluorine
sodium
oxygen
Answer : The molecular weight of a gas is, 128.9 g/mole
Explanation : Given,
Density of a gas = 5.75 g/L
First we have to calculate the moles of gas.
At STP,
As, 22.4 liter volume of gas present in 1 mole of gas
So, 1 liter volume of gas present in mole of gas
Now we have to calculate the molecular weight of a gas.
Formula used :
Now put all the given values in this formula, we get the molecular weight of a gas.
Therefore, the molecular weight of a gas is, 128.9 g/mole