Answer:
The shortest transverse distance between a maximum and a minimum of the wave is 0.1638 m.
Explanation:
Given that,
Amplitude = 0.08190 m
Frequency = 2.29 Hz
Wavelength = 1.87 m
(a). We need to calculate the shortest transverse distance between a maximum and a minimum of the wave
Using formula of distance
Where, d = distance
A = amplitude
Put the value into the formula
Hence, The shortest transverse distance between a maximum and a minimum of the wave is 0.1638 m.
Answer:
CB = 4.45 x 10⁻⁹ F = 4.45 nF
Explanation:
The capacitance of a parallel plate capacitor is given by the following formula:
C = ε₀A/d
where,
C = Capacitance
ε₀ = Permeability of free space
A = Area of plates
d = Distance between plates
FOR CAPACITOR A:
C = CA = 17.8 nF = 17.8 x 10⁻⁹ F
A = A₁
d = d₁
Therefore,
CA = ε₀A₁/d₁ = 17.8 x 10⁻⁹ F ----------------- equation 1
FOR CAPACITOR B:
C = CB = ?
A = A₁/2
d = 2 d₁
Therefore,
CB = ε₀(A₁/2)/2d₁
CB = (1/4)(ε₀A₁/d₁)
using equation 1:
CB = (1/4)(17.8 X 10⁻⁹ F)
<u>CB = 4.45 x 10⁻⁹ F = 4.45 nF</u>
From the calculations, the value of the acceleration due to gravity is 0.38 m/s^2.
<h3>What is weight?</h3>
The weight of an object is obtained as the product of the mass of the body and the acceleration due to gravity.
Thus;
When;
mass = 120 kg
weight = 46 N
acceleration due to gravity = 46 N/120 kg
=0.38 m/s^2
Learn more about acceleration due to gravity :brainly.com/question/13860566
#SPJ1
Answer:
The act of using senses or tools to gather information is called <em>Obser</em><em>vation</em><em>.</em>