Answer:
A chemical change because a temperature change occurred, the solid disappeared and a gas was produces
Explanation:
Magnesium reacts with hydrochloric acid releasing energy, and leading to the formation of magnesium chloride and hydrogen gas. This is represented by the equation below:
Mg₍s₎ + 2HCl₍aq)⇒ MgCl₂₍aq₎ + H₂₍g₎
If iron has a density of 7.87g/cm³ and a mass of 3.729g, then the volume of iron is 0.474cm³
HOW TO CALCULATE VOLUME:
- The volume of a substance can be calculated by dividing the mass by its density. That is;
Volume (mL) = mass (g) ÷ density (g/mL)
- The density of iron is given as 7.87g/cm³ while its mass is 3.729g of iron. Hence, the volume can be calculated as follows:
Volume = 3.729 ÷ 7.87
Volume = 0.474cm³
Therefore, the volume of iron is 0.474cm³
Learn more: brainly.com/question/2040396?referrer=searchResults
Since Au is a symbol for Gold, and once you split the name into to giving each ion its charge... you'll see that this compound has Au+2 and Cl03- .... so the name would be
Gold(II) Chlorate
Hope this helps!
6,160.506
Explanation:
That is, the molar mass of a substance is the mass (in grams per mole) of 6.022 × 1023 atoms, molecules, or formula units of that substance. In each case, the number of grams in 1 mol is the same as the number of atomic mass units that describe the atomic mass, the molecular mass, or the formula mass, respectively.
<u>Answer:</u> C) be hypertonic to Tank B.
<u>Explanation: </u>
<u>
The ability of an extracellular solution to move water in or out of a cell by osmosis</u> is known as its tonicity. Additionally, the tonicity of a solution is related to its osmolarity, which is the <u>total concentration of all the solutes in the solution.
</u>
Three terms (hypothonic, isotonic and hypertonic) are used <u>to compare the osmolarity of a solution with respect to the osmolarity of the liquid that is found after the membrane</u>. When we use these terms, we only take into account solutes that can not cross the membrane, which in this case are minerals.
- If the liquid in tank A has a lower osmolarity (<u>lower concentration of solute</u>) than the liquid in tank B, the liquid in tank A would be hypotonic with respect to the latter.
- If the liquid in tank A has a greater osmolarity (<u>higher concentration of solute</u>) than the liquid in tank B, the liquid in tank A would be hypertonic with respect to the latter.
- If the liquid in tank A has the same osmolarity (<u>equal concentration of solute</u>) as the liquid in tank B, the liquid in tank A would be isotonic with respect to the latter.
In the case of the problem, option A is impossible because the minerals can not cross the membrane, since it is permeable to water only. There is no way that the concentration of minerals decreases in tank A, so <u>the solution in this tank can not be hypotonic with respect to the one in Tank B. </u>
Equally, both solutions can not be isotonic and neither we can say that the solution in tank A has more minerals that the one in tank B because the liquid present in tank B is purified water that should not have minerals. Therefore, <u>options B and D are also not correct.</u>
Finally, the correct option is C, since in the purification procedure the water is extracted from the solution in tank A to obtain a greater quantity of purified water in tank B. In this way, the solution in Tank A would be hypertonic to Tank B.