Answer:
m∠C = 66°
Step-by-step explanation:
Since AB = BD, it means this triangle is an Isosceles triangle and as such;
∠BAD = ∠BDA = 24°
Thus, since sum of angles in a triangle is 180,then;
∠ABD = 180 - (24 + 24)
∠ABD = 180 - 48
∠ABD = 132°
We are told that BC = BD.
Thus, ∆BDC is an Isosceles triangle whereby ∠BCD = ∠BDC
Now, in triangles, we know that an exterior angle is equal to the sum of two opposite interior angles.
Thus;
132 = ∠BCD + ∠BDC
Since ∠BCD = ∠BDC, then
∠BCD = ∠BDC = 132/2
∠BCD = ∠BDC = 66°
Sector area = (central angle / 360) * PI * radius^2
sector area = (210 / 360) * PI * 2.3^2
sector area = (7 / 12) * PI * 5.29
<span><span><span>sector area = 9.6944313302
</span>
</span>
</span>
<span>sector area = 9.7 square meters (rounded)
Source:
http://www.1728.org/radians.htm
</span>
Answer:
Step-by-step explanation:
Here's the game plan. In order to find a point on the x-axis that makes AC = BC, we need to find the midpoint of AB and the slope of AB. From there, we can find the equation of the line that is perpendicular to AB so we can then fit a 0 in for y and solve for x. This final coordinate will be the answer you're looking for. First and foremost, the midpoint of AB:
and
Now for the slope of AB:
and
So if the slope of AB is 1/3, then the slope of a line perpendicular to that line is -3. What we are finding now is the equation of the line perpendicular to AB and going through (0, 3):
and filling in:
y - 3 = -3(x - 0) and
y - 3 = -3x + 0 and
y - 3 = -3x so
y = -3x + 3. Filling in a 0 for y will give us the coordinate we want for the x-intercept (the point where this line goes through the x-axis):
0 = -3x + 3 and
-3 = -3x so
x = 1
The coordinate on the x-axis such that AC = BC is (1, 0)
Answer:
<h2>SEE BELOW</h2>
Step-by-step explanation:
<h3>to understand this</h3><h3>you need to know about:</h3>
<h3>let's solve:</h3>
vertex:(h,k)
therefore
vertex:(-1,4)
axis of symmetry:x=h
therefore
axis of symmetry:x=-1
- to find the quadratic equation we need to figure out the vertex form of quadratic equation and then simply it to standard form i.e ax²+bx+c=0
vertex form of quadratic equation:
therefore
- y=a(x-(-1))²+4
- y=a(x+1)²+4
it's to notice that we don't know what a is
therefore we have to figure it out
the graph crosses y-asix at (0,3) coordinates
so,
3=a(0+1)²+4
simplify parentheses:
simplify exponent:
therefore
our vertex form of quadratic equation is
let's simplify it to standard form
simplify square:
simplify parentheses:
simplify addition:
therefore our answer is D)y=-x²-2x+3
the domain of the function
and the range of the function is
zeroes of the function:
factor out x and -1 respectively:
group:
therefore