<h3>
Answer:</h3>
495 g K₃N
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
<u>Stoichiometry</u>
- Using Dimensional Analysis
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
3.77 mol K₃N
<u>Step 2: Identify Conversions</u>
Molar Mass of K - 39.10 g/mol
Molar Mass of N - 14.01 g/mol
Molar Mass of K₃N - 3(39.10) + 14.01 = 131.31 g/mol
<u>Step 3: Convert</u>
- Set up:
- Multiply/Divide:
<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 3 sig figs.</em>
495.039 g K₃N ≈ 495 g K₃N
The equation structure for the above mentioned reaction can be written as
<u>Explanation:</u>
Considering the above reaction, When Boron sulfide, reacts with water more violently to form boric acid and hydrogen sulfide gas.
In order to balance the equation, we can do as follows.There are 2 B - atoms on both sides of the equation, but only 2 H - atoms, and one O - atom on LHS, so we have to balance it by putting 6 in front of water and 2 in front of Boric acid and 3 in front of hydrogen sulphide gas, so that we have 2 B - atoms, 3 - S atoms, 12 H - atoms on both sides of the equation, and it is balanced. Balanced equation is given as,
Thus a Balanced equation of the above mentioned reaction is written.
Answer:
positive H and negative S
Explanation:
For a reaction to be spontaneous, the absolute best combination is a negative Delta H and a positive Delta S. When they are both positive, the reaction is only spontaneous at higher temperatures. When they are both negative, the reaction is only spontaneous at lower temperatures. and again if a catalyst is added to the reaction, the activation energy is lowered because a lower-energy transition state is formed. The catalyst does not affect the energy of the reactants or products (and thus does not affect ΔG).
So from these discussions
Ea does not affect G value at all (whether +Ea or -Ea).
And for product to be formed the reaction should be spontaneous, where H is negative and S positive else the reaction will yield low product.
PH + pOH = 14
12.52 + pOH = 14
pOH = 14 - 12.52
pOH = 1.48
[OH⁻] = 10^ -pOH
[OH⁻] = 10 ^- 1.48
[OH⁻] = 0.033 M
<h3>Answer:</h3>
Limiting reactant is Lithium
<h3>
Explanation:</h3>
<u>We are given;</u>
- Mass of Lithium as 1.50 g
- Mass of nitrogen is 1.50 g
We are required to determine the rate limiting reagent.
- First, we write the balanced equation for the reaction
6Li(s) + N₂(g) → 2Li₃N
From the equation, 6 moles of Lithium reacts with 1 mole of nitrogen.
- Second, we determine moles of Lithium and nitrogen given.
Moles = Mass ÷ Molar mass
Moles of Lithium
Molar mass of Li = 6.941 g/mol
Moles of Li = 1.50 g ÷ 6.941 g/mol
= 0.216 moles
Moles of nitrogen gas
Molar mass of Nitrogen gas is 28.0 g/mol
Moles of nitrogen gas = 1.50 g ÷ 28.0 g/mol
= 0.054 moles
- According to the equation, 6 moles of Lithium reacts with 1 mole of nitrogen.
- Therefore, 0.216 moles of lithium will require 0.036 moles (0.216 moles ÷6) of nitrogen gas.
- On the other hand, 0.054 moles of nitrogen, would require 0.324 moles of Lithium.
Thus, Lithium is the limiting reagent while nitrogen is in excess.