Answer:
6.022 x 10²³; it is a conversion factor between moles and number of particles
Explanation:
It is the number of atoms , ions and molecules in one gram atom of element, one gram molecules of compound and one gram ions of a substance.
The number 6.022 × 10²³ is called Avogadro number.
For example,
18 g of water = 1 mole = 6.022 × 10²³ molecules of water
1.008 g of hydrogen = 1 mole of hydrogen = 6.022 × 10²³ atoms of hydrogen
238 g of uranium = 1 mole of uranium = 6.022 × 10²³ atoms of uranium
By taking ions:
62 g of NO⁻₃ = 1 mole of NO⁻₃ = 6.022 × 10²³ ions of NO⁻₃
96 g of SO₄²⁻ = 1 mole of SO₄²⁻ = 6.022 × 10²³ ions of SO₄²⁻
<span>it is located directly under the sima</span>
Answer:
I think its D
Explanation:
.........................
Since you forgot to include the choices for classification, I would just define each of these and tell you the hints that would help you classify them.
Among these acids and bases, its is the strong acids and strong bases that are easily classified. You should note that there are only 7 strong acids existing. All the rest are weak acids. These 7 acids are: HCl, HBr, HI, HClO₃, HClO₄, HNO₃ and H₂SO₄. On the other hand, there are only 8 strong bases; the rest are weak bases. These are the hydroxides of the Group ! and !! metals: LiOH, NaOH, KOH, RbOH, CsOH, Ca(OH)₂, Sr(OH)₂, and Br(OH)₂.
For the weak acids and weak bases, just remember the definitions of Arrhenius, Lewis and Bronsted-Lowry. A weak base are those compounds that accept H⁺ protons, produce OH⁻ ions when solvated and an electron donor. A weak acid are those compounds that donate H⁺ protons, produce H⁺ ions when solvated and an electron acceptor.