Each correspond to a principal energy level
Explanation:
Equation of the reaction:
Br2(l) + Cl2(g) --> 2BrCl(g)
The enthalpy change for this reaction will be equal to twice the standard enthalpy change of formation for bromine monochloride, BrCl.
The standard enthalpy change of formation for a compound,
ΔH°f, is the change in enthalpy when one mole of that compound is formed from its constituent elements in their standard state at a pressure of 1 atm.
This means that the standard enthalpy change of formation will correspond to the change in enthalpy associated with this reaction
1/2Br2(g) + 1/2Cl2(g) → BrCl(g)
Here, ΔH°rxn = ΔH°f
This means that the enthalpy change for this reaction will be twice the value of ΔH°f = 2 moles BrCl
Using Hess' law,
ΔH°f = total energy of reactant - total energy of product
= (1/2 * (+112) + 1/2 * (+121)) - 14.7
= 101.8 kJ/mol
ΔH°rxn = 101.8 kJ/mol.
Answer:
Explanation:
The hydrocarbon shown has a double bond. Hydrocarbons with double bonds are known as alkenes.
Cyclic alkanes have cyclic structure.
Alkanes only have single bonds.
Alkynes have triple bonds.
To know the density you also need to know the volume of the rock.
Answer:
2.77532244 grams
Explanation:
Percent yeild=actual/theoretical * 100
Plug in the values
93.4452=actual/2.97 *100
0.934452*2.97=2.77532244